Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613388

RESUMO

Glioblastoma multiforme is a universally lethal brain tumor that largely resists current surgical and drug interventions. Despite important advancements in understanding GBM biology, the invasiveness and heterogeneity of these tumors has made it challenging to develop effective therapies. Therapeutic oligonucleotides-antisense oligonucleotides and small-interfering RNAs-are chemically modified nucleic acids that can silence gene expression in the brain. However, activity of these oligonucleotides in brain tumors remains inadequately characterized. In this study, we developed a quantitative method to differentiate oligonucleotide-induced gene silencing in orthotopic GBM xenografts from gene silencing in normal brain tissue, and used this method to test the differential silencing activity of a chemically diverse panel of oligonucleotides. We show that oligonucleotides chemically optimized for pharmacological activity in normal brain tissue do not show consistent activity in GBM xenografts. We then survey multiple advanced oligonucleotide chemistries for their activity in GBM xenografts. Attaching lipid conjugates to oligonucleotides improves silencing in GBM cells across several different lipid classes. Highly hydrophobic lipid conjugates cholesterol and docosanoic acid enhance silencing but at the cost of higher neurotoxicity. Moderately hydrophobic, unsaturated fatty acid and amphiphilic lipid conjugates still improve activity without compromising safety. These oligonucleotide conjugates show promise for treating glioblastoma.

2.
J Org Chem ; 88(9): 5341-5347, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37058436

RESUMO

We report a new reactivity for the inverse electron demand Diels-Alder (iEDDA) reaction between norbornene and tetrazine. Instead of simple 1:1 condensation between norbornene- and tetrazine-conjugated biomolecules, we observed that dimeric products were preferentially formed. As such, an olefinic intermediate formed after the addition of the first tetrazine unit to norbornene rapidly undergoes a consecutive cycloaddition reaction with a second tetrazine unit to result in a conjugate with a 1:2 stoichiometric ratio. This unexpected dimer formation was consistently observed in the reactions of both small-molecule norbornenes and tetrazines, as well as oligonucleotide conjugates. When norbornene was replaced with bicyclononyne to bypass the formation of this olefinic reaction intermediate, the reactions resulted exclusively in rapid formation of the expected 1:1 stoichiometric conjugates.

3.
Proc Natl Acad Sci U S A ; 120(11): e2219523120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893269

RESUMO

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , RNA Interferente Pequeno/genética , COVID-19/terapia , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Oligonucleotídeos , Pulmão
4.
Nucleic Acids Res ; 50(15): 8418-8430, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35920332

RESUMO

The lung is a complex organ with various cell types having distinct roles. Antisense oligonucleotides (ASOs) have been studied in the lung, but it has been challenging to determine their effectiveness in each cell type due to the lack of appropriate analytical methods. We employed three distinct approaches to study silencing efficacy within different cell types. First, we used lineage markers to identify cell types in flow cytometry, and simultaneously measured ASO-induced silencing of cell-surface proteins CD47 or CD98. Second, we applied single-cell RNA sequencing (scRNA-seq) to measure silencing efficacy in distinct cell types; to the best of our knowledge, this is the first time scRNA-seq has been applied to measure the efficacy of oligonucleotide therapeutics. In both approaches, fibroblasts were the most susceptible to locally delivered ASOs, with significant silencing also in endothelial cells. Third, we confirmed that the robust silencing in fibroblasts is broadly applicable by silencing two targets expressed mainly in fibroblasts, Mfap4 and Adam33. Across independent approaches, we demonstrate that intratracheally administered LNA gapmer ASOs robustly induce gene silencing in lung fibroblasts. ASO-induced gene silencing in fibroblasts was durable, lasting 4-8 weeks after a single dose. Thus, lung fibroblasts are well aligned with ASOs as therapeutics.


Assuntos
Células Endoteliais , Fibroblastos/efeitos dos fármacos , Pulmão/citologia , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Fibroblastos/metabolismo , Inativação Gênica , Pulmão/efeitos dos fármacos , Camundongos , Oligonucleotídeos/administração & dosagem , Traqueia/metabolismo
5.
ACS Chem Biol ; 17(5): 1045-1050, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35446558

RESUMO

CRISPR-Cas technology has revolutionized genome editing. Its broad and fast-growing application in biomedical research and therapeutics has led to increased demand for guide RNAs. The synthesis of chemically modified single-guide RNAs (sgRNAs) containing >100 nucleotides remains a bottleneck. Here we report the development of a tetrazine ligation method for the preparation of sgRNAs. A tetrazine moiety on the 3'-end of the crRNA and a norbornene moiety on the 5'-end of the tracrRNA enable successful ligation between crRNA and tracrRNA to form sgRNA under mild conditions. Tetrazine-ligated sgRNAs allow efficient genome editing of reporter and endogenous loci in human cells. High-efficiency editing requires structural optimization of the linker.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Humanos , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética
6.
Asian J Transfus Sci ; 16(2): 167-174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687546

RESUMO

BACKGROUND: The ABO and Rhesus grouping system antigens have been found to have the highest immunogenicity and propensity to produce alloantibodies that cause most of the transfusion reactions. The Rhesus antigens that produce most of the immunogenic transfusion reactions are D, C, c, E, and e. Knowledge of the distribution of these Rh antigens in a population helps to render compatible blood in alloimmunized patients. AIM: The aim was to study the distribution and frequency of principal Rh blood group antigens (D, C, c, E, and e) and their phenotypes in the blood donors attending blood bank in a tertiary care hospital in Barpeta district of Assam. MATERIALS AND METHODS: The study was conducted in 315 voluntary blood donors in the blood bank of a tertiary care center. Rh-D typing was done by conventional tube method. Specific monoclonal antisera, i.e., anti-C, anti-c, anti-E, and anti-e, were used and tests were performed by conventional tube method for detection of the presence of rest of the major Rh antigens. RESULTS: The samples were analyzed for the five major Rhesus antigens. "D" antigen was found to be the most common antigen (99.05%), followed by e (97.14%), C (92.38%), c (51.43%), and E (20.95%). In order of descending frequency, the most common phenotypes were DCCee - 45.71%, DCcee - 30.48%, DCcEe - 11.43%, DccEe - 4.76%, DCcEE - 1.90%, DCCEe - 1.90%, Dccee - 1.90%, DCCEE - 0.95%, and dccee - 0.95%. CONCLUSION: D antigen is the most common antigen in our study population, whereas "e" antigen is the most common in most of the studies done from other parts of India. Data on frequencies of major Rh antigens in the local donor population will help in transfusing alloimmunized patients with corresponding antibody-negative blood ensuring blood safety.

7.
ACS Nano ; 16(1): 533-540, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34927423

RESUMO

A four-stranded scaffold of nucleic acids termed G-quadruplex (G4) has found growing applications in nano- and biotechnology. Propeller loops are a hallmark of the most stable intramolecular parallel-stranded G4s. To date, propeller loops have been observed to span only a maximum of three G-tetrad layers. Going beyond that would allow creation of more stable scaffolds useful for building robust nanodevices. Here we investigate the formation of propeller loops spanning more than three layers. We show that native nucleotide sequences are incompatible toward this goal, and we report on synthetic non-nucleotide linkers that form a propeller loop across four layers. With the established linkers, we constructed a four-layered intramolecular parallel-stranded G4, which exhibited ultrahigh thermal stability. Control on loop design would augment the toolbox toward engineering of G4-based nanoscaffolds for diverse applications.


Assuntos
Quadruplex G , DNA/genética , Nucleotídeos , Sequência de Bases , Conformação de Ácido Nucleico
8.
Nucleic Acid Ther ; 32(1): 66-73, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34928745

RESUMO

Reliable detection and quantification of antisense oligonucleotides (ASOs) in experimental and clinical specimens are essential to understand the biological function of novel oligonucleotide-based therapeutics. In this study, we describe a method to detect and quantify ASOs in biological samples, whereby the ASO acts as a splint to direct the ligation of complementary probes and quantitative real-time PCR was used to monitor ligation products. Low levels of 2'-O-methoxyethyl (2'-O-MOE) gapmer ASO in serum, liver, kidney, lung, heart, muscle, and brain tissues can be detected over a 6-log linear range for detection using this method. This method allows quantification of various types of chemically modified ASOs, including phosphorothioate linkage, 2'-O-methyl, 2'-O-MOE, and locked nucleic acid, as well as siRNAs. This method does not require probe modifications, and can be performed using standard laboratory equipment; making it a fast, sensitive, and reliable technique that can be widely applied. This detection method may find potential applications in detection of therapeutic oligonucleotides in biological samples.


Assuntos
Oligonucleotídeos Antissenso , Contenções , Fígado , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Fosforotioatos , Reação em Cadeia da Polimerase em Tempo Real
9.
Biochemistry ; 58(10): 1319-1331, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30775913

RESUMO

Chemically modified peptide nucleic acids (PNAs) show great promise in the recognition of RNA duplexes by major-groove PNA·RNA-RNA triplex formation. Triplex formation is favored for RNA duplexes with a purine tract within one of the RNA duplex strands, and is severely destabilized if the purine tract is interrupted by pyrimidine residues. Here, we report the synthesis of a PNA monomer incorporated with an artificial nucleobase S, followed by the binding studies of a series of S-modified PNAs. Our data suggest that an S residue incorporated into short 8-mer dsRNA-binding PNAs (dbPNAs) can recognize internal Watson-Crick C-G and U-A, and wobble U-G base pairs (but not G-C, A-U, and G-U pairs) in RNA duplexes. The short S-modified PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. Interestingly, replacement of the C residue in an S·C-G triple with a 5-methyl C results in the disruption of the triplex, probably due to a steric clash between S and 5-methyl C. Previously reported PNA E base shows recognition of U-A and A-U pairs, but not a U-G pair. Thus, S-modified dbPNAs may be uniquely useful for the general recognition of RNA U-G, U-A, and C-G pairs. Shortening the succinyl linker of our PNA S monomer by one carbon atom to have a malonyl linker causes a severe destabilization of triplex formation. Our experimental and modeling data indicate that part of the succinyl moiety in a PNA S monomer may serve to expand the S base forming stacking interactions with adjacent PNA bases.


Assuntos
Ácidos Nucleicos Peptídicos/síntese química , Ácidos Nucleicos Peptídicos/fisiologia , RNA/química , Pareamento de Bases/genética , Pareamento de Bases/fisiologia , Simulação por Computador , DNA/química , Modelos Biológicos , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , RNA/metabolismo , RNA de Cadeia Dupla
10.
Nucleic Acids Res ; 44(19): 9071-9082, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27596599

RESUMO

RNA duplex regions are often involved in tertiary interactions and protein binding and thus there is great potential in developing ligands that sequence-specifically bind to RNA duplexes. We have developed a convenient synthesis method for a modified peptide nucleic acid (PNA) monomer with a guanidine-modified 5-methyl cytosine base. We demonstrated by gel electrophoresis, fluorescence and thermal melting experiments that short PNAs incorporating the modified residue show high binding affinity and sequence specificity in the recognition of an RNA duplex containing an internal inverted Watson-Crick C-G base pair. Remarkably, the relatively short PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. The attached guanidine group stabilizes the base triple through hydrogen bonding with the G base in a C-G pair. Selective binding towards an RNA duplex over a single-stranded RNA can be rationalized by the fact that alkylation of the amine of a 5-methyl C base blocks the Watson-Crick edge. PNAs incorporating multiple guanidine-modified cytosine residues are able to enter HeLa cells without any transfection agent.


Assuntos
Pareamento de Bases , Citosina/química , Guanidina/química , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , RNA/química , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Ácidos Nucleicos Peptídicos/metabolismo , Purinas , Pirimidinas , Sais , Termodinâmica
11.
Chem Commun (Camb) ; 52(45): 7261-4, 2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27181164

RESUMO

The unfolding pathway of human telomeric i-motifs was monitored by both monomer and exciplex fluorescence of in-stem thiazole orange. A uniform triplex intermediate was observed upon unfolding i-motifs against either pH or thermal denaturation.


Assuntos
Benzotiazóis/química , Quinolinas/química , Telômero/química , Sequência de Bases , Dicroísmo Circular , Citosina/química , Humanos , Concentração de Íons de Hidrogênio , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , Temperatura de Transição
12.
Org Biomol Chem ; 13(20): 5646-51, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25886653

RESUMO

The two important epigenetic markers in the human genome, 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC), are involved in gene regulation processes. As a major epigenetic target, cytosines in a C-rich DNA sequence were substituted with mC and hmC to investigate the thermal stability and pH sensitivity of the corresponding i-motifs. Circular Dichroism (CD) studies indicate the formation of i-motifs at acidic pH (<6.5) for mC- and hmC-modified DNA sequences. Thermal denaturation results suggest that DNA i-motifs are stabilized when modified with one or two mCs. However, hypermethylation with mC and single modification with hmC cause destabilization of the structure. A biomimetic crowding agent does not alter the stability effect trends resulting from mC and hmC modifications, though the corresponding i-motifs show elevated melting temperatures without significant changes in pKa values.


Assuntos
5-Metilcitosina/química , Citosina/análogos & derivados , Metilação de DNA , DNA/química , Motivos de Nucleotídeos/genética , Telômero/genética , Dicroísmo Circular , Citosina/química , DNA/genética , Humanos , Estrutura Terciária de Proteína , Telômero/química , Temperatura
13.
Wiley Interdiscip Rev RNA ; 6(1): 111-28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25146348

RESUMO

The diverse biological functions of RNA are determined by the complex structures of RNA stabilized by both secondary and tertiary interactions. An RNA triplex is an important tertiary structure motif that is found in many pseudoknots and other structured RNAs. A triplex structure usually forms through tertiary interactions in the major or minor groove of a Watson-Crick base-paired stem. A major-groove RNA triplex structure is stable in isolation by forming consecutive major-groove base triples such as U·A-U and C(+) ·G-C. Minor-groove RNA triplexes, e.g., A-minor motif triplexes, are found in almost all large structured RNAs. As double-stranded RNA stem regions are often involved in biologically important tertiary triplex structure formation and protein binding, the ability to sequence specifically target any desired RNA duplexes by triplex formation would have great potential for biomedical applications. Programmable chemically modified triplex-forming oligonucleotides (TFOs) and triplex-forming peptide nucleic acids (PNAs) have been developed to form TFO·RNA2 and PNA·RNA2 triplexes, respectively, with enhanced binding affinity and sequence specificity at physiological conditions. Here, we (1) provide an overview of naturally occurring RNA triplexes, (2) summarize the experimental methods for studying triplexes, and (3) review the development of TFOs and triplex-forming PNAs for targeting an HIV-1 ribosomal frameshift-inducing RNA, a bacterial ribosomal A-site RNA, and a human microRNA hairpin precursor, and for inhibiting the RNA-protein interactions involving human RNA-dependent protein kinase and HIV-1 viral protein Rev.


Assuntos
Substâncias Macromoleculares , Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , Pareamento de Bases , Regulação da Expressão Gênica , Humanos , Biologia Molecular/métodos , Técnicas de Diagnóstico Molecular/métodos , RNA de Cadeia Dupla
14.
Bioconjug Chem ; 25(8): 1412-20, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25055196

RESUMO

In order to overcome poor cell permeability of antisense peptide nucleic acid (PNA), a fluorescent mesoporous silica nanoparticle (MSNP) carrier was developed to successfully deliver antisense PNA into cancer cells for effective silence of B-cell lymphoma 2 (Bcl-2) protein expression in vitro. First, fluorescent MSNP functionalized with disulfide bond bridged groups was fabricated and characterized. Antisense and negative control PNAs were synthesized and further conjugated with fluorescent dye cyanine 5. Then, the PNAs were covalently connected with fluorescent MSNP via amidation between amino group of PNAs and carboxylic acid group on the MSNP surface. High intracellular concentration of glutathione serves as a natural reducing agent, which could cleave the disulfide bond to trigger the PNA release in vitro. Confocal laser scanning microscopy studies prove that PNA conjugated MSNP was endocytosed by HeLa cancer cells, and redox-controlled intracellular release of antisense PNA from fluorescent MSNP was successfully achieved. Finally, effective silencing of the Bcl-2 protein expression induced by the delivered antisense PNA into HeLa cells was confirmed by Western blot assay.


Assuntos
Portadores de Fármacos/química , Corantes Fluorescentes/química , Espaço Intracelular/metabolismo , Nanopartículas/química , Oligonucleotídeos Antissenso/química , Ácidos Nucleicos Peptídicos/química , Dióxido de Silício/química , Sequência de Bases , Citoplasma/metabolismo , Inativação Gênica , Células HeLa , Humanos , Oligonucleotídeos Antissenso/genética , Ácidos Nucleicos Peptídicos/genética , Porosidade , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteínas Proto-Oncogênicas c-bcl-2/genética
15.
Nucleic Acids Res ; 42(6): 4008-18, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24423869

RESUMO

Peptide nucleic acids (PNAs) have been developed for applications in biotechnology and therapeutics. There is great potential in the development of chemically modified PNAs or other triplex-forming ligands that selectively bind to RNA duplexes, but not single-stranded regions, at near-physiological conditions. Here, we report on a convenient synthesis route to a modified PNA monomer, thio-pseudoisocytosine (L), and binding studies of PNAs incorporating the monomer L. Thermal melting and gel electrophoresis studies reveal that L-incorporated 8-mer PNAs have superior affinity and specificity in recognizing the duplex region of a model RNA hairpin to form a pyrimidine motif major-groove RNA2-PNA triplex, without appreciable binding to single-stranded regions to form an RNA-PNA duplex or, via strand invasion, forming an RNA-PNA2 triplex at near-physiological buffer condition. In addition, an L-incorporated 8-mer PNA shows essentially no binding to single-stranded or double-stranded DNA. Furthermore, an L-modified 6-mer PNA, but not pseudoisocytosine (J) modified or unmodified PNA, binds to the HIV-1 programmed -1 ribosomal frameshift stimulatory RNA hairpin at near-physiological buffer conditions. The stabilization of an RNA2-PNA triplex by L modification is facilitated by enhanced van der Waals contacts, base stacking, hydrogen bonding and reduced dehydration energy. The destabilization of RNA-PNA and DNA-PNA duplexes by L modification is due to the steric clash and loss of two hydrogen bonds in a Watson-Crick-like G-L pair. An RNA2-PNA triplex is significantly more stable than a DNA2-PNA triplex, probably because the RNA duplex major groove provides geometry compatibility and favorable backbone-backbone interactions with PNA. Thus, L-modified triplex-forming PNAs may be utilized for sequence-specifically targeting duplex regions in RNAs for biological and therapeutic applications.


Assuntos
Citosina/análogos & derivados , Ácidos Nucleicos Peptídicos/química , RNA de Cadeia Dupla/química , Pareamento de Bases , Citosina/química , DNA/química , Mudança da Fase de Leitura do Gene Ribossômico , HIV-1/genética , Ácidos Nucleicos Peptídicos/síntese química , RNA/química , RNA Viral/química
16.
Artif DNA PNA XNA ; 1(2): 68-75, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21686241

RESUMO

1,2,3-triazole analogues of PNA (TzNA) in which the amide link in backbone is replaced by triazole ring is synthesized on solid phase by 'click' chemistry and such triazolothymine PNA chimeric oligomers are shown to significantly stabilize the derived PNA(2):DNA triplexes. With increasing number of triazole units in the backbone, single stranded PNA oligomers exhibit enhanced self-ordering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...